
Swinburne Research Bank
http://researchbank.swinburne.edu.au

Author: Xu, Jiajie; Liu, Guanfeng; Zheng, Kai; Liu,
Chengfei; Guo, Haoming; Ding, Zhiming

Title: On Efficient Passenger Assignment for Group
Transportation

Editor: Matthias Renz, Cyrus Shahabi, Xiaofang Zhou and
Muhammad Aamir Cheema

Conference name: 20th International Conference, DASFAA 2015
Conference location: Hanoi, Vietnam
Conference dates: 20-23 April 2015
Series title and volume: Lecture Notes in Computer Science: Database

systems for advanced applications
Place published: Switzerland
Publisher: Springer International Publishing
Year: 2015
Pages: 226-243
URL: http://hdl.handle.net/1959.3/408723

Copyright: Copyright © 2015 Springer International
Publishing Switzerland. The author's accepted
manuscript is reproduced here in accordance with
the copyright policy of the publisher. The final
publication is available at http://link.springer.com/

This is the author’s version of the work, posted here with the permission of the publisher for your
personal use. No further distribution is permitted. You may also be able to access the published
version from your library.

The definitive version is available at: http://dx.doi.org/10.1007/978-3-319-18120-2_14

Powered by TCPDF (www.tcpdf.org)

Swinburne University of Technology | CRICOS Provider 00111D | swinburne.edu.au

http://www.tcpdf.org

On Efficient Passenger Assignment for Group
Transportation

Jiajie Xu 1 Guanfeng Liu 1 Kai Zheng 1 Chengfei Liu 2 Zhiming Ding 3

1 Department of Computer Science & Technology, Soochow University
2 Faculty of ICT, Swinburne University of Technology, Australia

3 Institute of Software, Chinese Academy of Sciences
1 {xujj, gfliu, kevinz}@suda.edu.cn 2 cliu@swin.edu.au 3 zhiming@iscas.ac.cn

Abstract. With the increasing popularity of LBS services, spatial assignment
has become an important problem nowadays. Nevertheless most existing works
use Euclidean distance as the measurement of spatial proximity. In this paper, we
investigate a variant of spatial assignment problem with road networks as the un-
derlying space. Given a set of passengers and a set of vehicles, where each vehicle
waits for the arrival of all passengers assigned to it, and then carries them to the
same destination, our goal is to find an assignment from passengers to vehicles
such that maximum travel time of all passengers is minimized. Such a passen-
ger assignment problem has various applications in real life. However, finding
the optimal assignment efficiently is quite challenging due to high computational
overhead in fastest path search and combinatorial nature of capacity constrained
assignment. In this paper, we first propose two exact solutions to find the optimal
results, and then an approximate solution to achieve higher efficiency by trading
a little accuracy. Finally, performances of all proposed algorithms are evaluated
on real dataset.

1 Introduction

Consider a set of passengers P and a set of vehicles V , all distributed on road networks.
Each vehicle waits for a group of passengers (assigned to it) and carries them to a
common destination d. Our objective is to find the passenger assignment A ⊆ P × V
that can enable all passengers to arrive destination d at earliest, and vehicles are not
allowed to carry more passengers than their capacity limits. Such a problem is called
passenger assignment for group transportation, which can find various applications in
real life.

An illustrative example is shown in Figure 1 to describe the passenger assignmen-
t problem. Assume that several passengers (i.e. P1 − P6), vehicles (i.e. V1, V2) and
the final destination d are distributed on road network as Figure 1(a), and each vehicle
can carry no more than three staffs. All passengers are required to go to d (by taking
vehicles) as soon as possible for some purposes. To save time, it adopts an assemble-
based-group-transportation fashion, i.e., passengers go to assemble on vehicle (by pri-
vate car or taxi) like Figure 1(b), and then vehicles carry them to the final destination.
The key issue is how to find the optimal assignment from passengers to vehicles effi-
ciently such as Figure 1(b), such that all passengers can arrive destination and start the

activities at their earliest. Likewise, the passenger assignment problem can be widely
used in applications like logistic control, resource supply and other group transportation
recommendation systems, etc.

P1

P2

P3

P4

P5 P6

V1

V2

d
 To

From

V1 V2 d

P1 5 35 -

P2 8 26 -

P3 17 16 -

P4 15 12 -

P5 21 8 -

P6 40 10 -

V1 - - 22

V2 - - 38

Medical Staff Vehicle Destination
Travel Cost Matrix (minutes)

V
1

V
2

P1
P2
P4

P3
P5
P6

a Distribution b Assignment

Fig. 1. An example of passenger assignment

Motivated by the above example, this paper studies the group transportation oriented
passenger assignment problem, which tend to have high computational overhead for two
main reasons: first, the large number of combinations of assignment from P to V makes
the search space to be extremely large, particularly when the size of passenger or vehicle
sets goes up; secondly, numerous fastest path queries (FPQ) need to be processed for
deriving the travel cost from passengers to vehicles (i.e. information in travel cost matrix
in Figure 1).

Capacity constrained assignment is a classical research problem that has been well
studied in literature [5, 4, 6]. Recently lots of efforts have been made to address the
capacity constrained spatial assignment (CCSA) problems [16, 15], by using Euclidean
distance as the measurement of spatial proximity between two objects. However, exist-
ing CCSA solutions cannot be simply applied to our problem for two reasons: (1) The
goal of optimization is different. Most CCSA algorithms are mainly designed to min-
imize the sum of Euclidean distance of all assigned object pairs, while the passenger
assignment problem seeks to minimize the travel cost of the most time-consuming pas-
sengers, which provide us oppertunities to further speed up the assignment processing;
(2) The spatial proximity measurement is different. The network-based spatial prox-
imity used in the passenger assignment problem causes a large number of fastest path
searches, which is generally regarded as much more computationally expensive than
the evaluation of Euclidean distance.

In this paper, we present a novel strategy to find the optimal assignment based on
maximum bipartite matching. It utilizes a set of pruning mechanisms sensitive to the
most-time-consuming-passenger, so that the search can be constrained in small bipartite
sub-graphs and in less loops. However, though the bounds used in the strategy ensure
it has a fairly good performance on assignment step, the overall efficiency is still not

satisfactory because of the vast processing cost of the scalable FPQs. Therefore, an ap-
proximate solution is further proposed to trade off a little accuracy for higher efficiency.
The main contribution of this paper can be summarized as follows:

– We define a problem called passenger assignment for group transportation, which
could potentially benefit many applications such as emergency response, supply
chain management and traffic planning.

– We propose a novel assignment strategy based on maximum bipartite matching, by
which the optimal passenger assignment can be efficiently found.

– We propose an approximate FPQ querying based assignment strategy, which uti-
lizes bounded travel cost computation to reduce search space. It significantly im-
prove the efficiency with little sacrifice on accuracy.

– We implement the proposed algorithms and conduct experiments on real dataset to
evaluate the performances of our proposed solutions.

The rest of the paper is organized as follows. Section 2 presents the related work and
Section 3 formally defines the passenger assignment problem. Afterwards, we introduce
two exact passenger assignment algorithms in Section 4, and an approximate solution
called TN-FPS in Section 5. After discussions on experimental results in Section 6, the
paper is concluded in Section 7.

2 Related Works

Assignment is a classical problem that has been studied intensively, with many clas-
sical matching problems of bipartite graph, such as the maximum perfect matching
(MPM) and minimum weight perfect matching (MWPM) problem. So far, there exist
a lot of literatures towards bipartite graph matching in the operational research area. A
well-known solution is the classical Hungarian algorithm and its variations [10, 12, 1],
both having O(mn + n2logn) time complexity. Later, increasing attention are paid to
assignment with capacity constraints, with many algorithms proposed to address the
capacity constrained assignment (CCA) problem, such as successive shortest path algo-
rithm [3][15].

More recently, with the fast development of mobile computing, the problem of as-
signment and matching on spatial objects becomes popular. Specifically, [17] studied
the spatial matching problem, which is reduced to the stable marriage problem for spa-
tial objects, and [16, 15] studied the issue of CCA problems for objects in Euclidean
space. However many CCA applications are road network constrained, and they can-
not be well supported by [16, 15] because of their criterions and Euclidean distance
measure adopted, like the passenger assignment problem of this paper. Therefore, new
solutions are needed to support efficient assignment processing for applications in road
networks like resource dispatch, evacuation in disaster, intelligent services and supply
chain management.

In addition, another key technique our passenger assignment problem relies on is
spatial and distance query processing. The basic type of distance query is shortest path
query (SPQ). Typical solutions for SPQ include Dijkstra and A* algorithm, which tra-
verses the road network nodes in ascending order of their distance from query position,

and runs inO(nlogn+m) time by using Fibonacci heap. [9] discussed SPQ problem on
complex terrain space. Recently, many literatures tried to exploit the hierarchical struc-
ture of road map in a pre-processing step, and then properly use it to accelerate NDQ,
such indexes mainly include the highway hierarchies (HH) [13], contraction hierarchies
(CH) [7], and transit-node routing (TNR) [8] algorithms. More recently, the work [14]
pre-compute certain shortest path distances called path oracles to answer approximate
SPQ in O(log|V |) time and O(|V |

ϵ2) space with is an error bound of ϵ.
Passenger Assignment requires scalable FPQ to find the time cost between objects

in P and V . Compared to SPQ, the FPQ is much more challenging because real-time
traffic condition needs to be considered, resulting road network with dynamic travel cost
on the edges. All the above algorithms rely on heavy pre-processing, and are thus not
suitable for dynamic scenarios where the road network topology or edge weights may
change frequently. As a result, we have to use some approximate FPQ algorithms, so as
to improve the efficiency of query processing. Moreover it is necessary to design robust
matching algorithms that can find good solution based on approximate FPQ results.

3 Problem Definition

3.1 Spatial Networks

A spatial network is modeled by a connected and undirected graph G = (V,E), where
V is a set of vertices and E is a set of edges. A vertex vi ∈ V indicates a road
intersection or an end of a road. An edge e ∈ E is defined as a pair of vertices
and represents a segment connecting the two adjacent vertices. For example, edge
e = {vi, vj} represents a road segment that enables travel between vertices vi and
vj . We use time(e) to denote the time required to pass a road segment e based on real-
time traffic condition. Given two locations a and b in spatial network, its fastest path
FPa,b is a sequence of edges linking a and b with the minimal total travel cost. We use
TCa,b =

∑
e∈FPa,b

time(e) to represent the travel cost between a and b. Note that the
travel cost between any two vertexes may update with the road condition change.

All passengers in P and vehicles in V are embedded in networks and they may
be located on edges. If the network distances to the two end vertices of an edge are
known, it is straightforward to derive network distance to any point in this edge. Thus,
we assume that all data points are on vertices for clear description.

3.2 Passenger Assignment for Group Transportation

Let P be a set of passengers and V a set of vehicles, all distributed on a spatial network
G. Each p ∈ P denotes a passenger with his or her geographical location p.l, and each
v ∈ V denotes a vehicle that can carry up to v.c passengers. Each passenger in P
moves to an assigned vehicle in V first. Each vehicle starts when its passengers arrive
and transport the to a common destination d.

For example in disaster management scenario, medical staffs go to a special vehicle
first, and special vehicles then carry them to rescue mission place (where might be
dangerous) after all staffs assigned to this vehicle have assembled. To plan the routes

for all medical staffs, we need to assign them to special vehicles, and the result is called
an assignment. We first define the notions of valid assignment to judge if an assignment
is a qualified result.

Definition 1. (Valid Assignment) An assignment A ⊆ P × V is said to be a valid
assignment if it satisfies:

(1) capacity constraint, i.e. each vehicle v ∈ V must appears at most v.c times in
assignment A due to its capacity constraint;

(2) assignmentAmust be full to P , i.e. each passenger p ∈ P must appear and only
appear once in A, i.e. |A| = |P |, and p ̸= p′ must be true for any two pairs (p, v) ∈ A
and (p′, v′) ∈ A.

For each pair (p, v) ∈ A in assignment A, passenger p moves toward its assigned
vehicle v first. Later, each vehicle v carries {p′|(p′, v) ∈ A} to destination when they
arrive v.l. Obviously, the arrival time of all passengers in P is determined by the one
having maximum total travel cost (time for waiting is not included), so we need to
define two important notions ’pair cost’ and ’critical pair’.

Definition 2. (Pair Cost) For each pair (p, v) where p ∈ P and v ∈ V , the cost of
this pair PCp,v is measured as the total travel cost from p.l to destination d via v.l on
spatial network G such that

PCp,v = TC(p.l, v.l) + TC(v.l, d)

Note that, the possible waiting time of a passenger p for other passengers at v.l is
not included. For example in Figure 1, the pair cost of (P2, V1) is computed as PCP2,V1

= 8 + 22 = 30.

Definition 3. (Critical Pair of an Assignment) The critical pair CP (A) of an assign-
ment A is the pair (p, v) ∈ A that has the maximum pair cost PCp,v , and we call the
passenger p as critical passenger.

To ensure that all passengers in P can arrive destination in earliest, e.g. for the rescue
missions or goods supply in emergency management scenarios, we further define the
cost of a valid assignment based on its critical pair. For example in Figure 1, if assign-
ment is made as Figure 1(b), then the pair (P3, V2) is the critical pair because of its
greatest pair cost PCP3,V2 = 54.

Definition 4. (Cost of an Assignment) The cost ψ(A) = max ({PCp,v | (p, v) ∈ A })
of a valid assignment A is quantified to be the pair cost of its critical pair, meaning the
maximal travel cost of all passengers in P on the spatial network.

Problem Formalization. Given a spatial network G, a passenger set P and a vehicle
set V as input. Among all valid assignments from set P to set V , we aim to find the one
A with the minimal assignment cost ψ(A), which is determined by the pair cost (i.e.
total travel cost) of A’s critical pair based on G.

4 Exact Algorithms

This section presents two exact methods called IPA and MBMA for computing the
optimal passenger assignment.

4.1 Integer Programming based Assignment (IPA)

Integer programming is known to be a widely used processing model for optimization
problems. In this section, we introduce an effective integer programming based assign-
ment solution.

As passenger assignment here is a road network constrained problem, we process
the FPQs (between passengers/vehicles and vehicles/destination) first to derive all nec-
essary travel cost information by the Dijkstra algorithm. After that, we find the valid
assignment A with minimum value of ψ(A) in the assignment step based on the pair
cost information derived from last step. Valid assignment means to satisfy the capacity
constraint of vehicles, and ensures each passenger to appear in A once and only once.
Based on above constraints and optimization goals, we notice the passenger assignment
problem can be expressed as the following integer program, where x = (p, v) represents
the 0-1 integer vector of the assignment between p ∈ P and v ∈ V :

minimize τ(A) = max ({PCp,v × x(p, v) | (p, v) ∈ A })

subject to x(p, v) = 0 or 1 ∀p ∈ P, v ∈ V∑
p∈P x(p, v) ≤ v.c ∀v ∈ V∑
v∈V x(p, v) ≤ 1 ∀p ∈ P

In general, the purpose of above 0-1 program is to find the passenger assignmen-
t A such that: (1) to maximize value of τ(x) for the returned assignment; (2) all of
the subject conditions can be satisfied. Particularly, only those pairs (p, v) having that
x(p, v) = 1 are included in assignment A, meaning that the assignment from p to v is
made. It is obvious that the final result A derived by above program is an assignment
being valid and optimal. But the IPA algorithm is inefficient in most cases because of
the ’max’ operator used in optimization goal (i.e. to get the maximum pair cost), which
lead to no bound to be easily found and used to stop the iterations. In contrast, the prun-
ing effect would be greatly improved for cases that to minimize linear expression or
using ’sum’ operator, because an upper bound (i.e. current minimal value) is utilized
to help us break in the middle. Therefore, we further propose another method to find
optimal assignment in a more efficient fashion.

4.2 Maximum Bipartite Matching based Assignment (MBMA)

In this section, we introduce a MBMA strategy that can return optimal results efficient-
ly. By constructing a bipartite graph BG = (P, V,E), where the weight of an edge
e(p, v) ∈ E in bipartite graph w(e) = PCp,v is the pair cost between passenger p and
vehicle v. We aim to find an valid assignment A ⊆ P × V on bipartite graph BG with
minimum ψ(A). Existing algorithms (e.g. Hungarian algorithm for maximum match-
ing, and Kuhn-Munkres algorithm for minimum weight matching) cannot be applied
because of the optimization criterion and capacity constraints we face in this paper. To
cover the gap, we design an bipartite matching based algorithm that is more suitable for
passenger assignment. The MBMA algorithm works with the following steps:

Step 1. Assignment Initialization Step. It first initializes a valid assignmentA based
on input bipartite graph using a given maximum bipartite matching strategy tailored for
CCA-SN;

Step 2. Assignment Improvement Step. We prune some high weighted bipartite
edges, and re-assigns some matches in A to find a better assignment on a bipartite sub-
graph;

Step 3. Iterative Step. Assignment improvement is processed in loop until it is not
possible to perform the assignment improvement step.

4.2.1 Assignment Initialization
Given an input bipartite graphBG, we conduct the assignment operation to derive a

valid assignment. Among the existing maximum bipartite matching (MBM) solutions,
the Hungarian algorithm is the most famous one, and it finds the maximum matching
by finding an augmenting path from each v ∈ V to V ′ and adding it to the matching
if it exists. We know that each augmenting path can be found in O(|E| + |V ∪ V ′|)
time, and we need to find |V ∪ V ′| times of the augmenting path. Therefore, we can
find maximum matching on O(mn+n2logn) time, where m = |E| and n = |V ∪V ′|.
It is a useful technique to our problem in finding a valid assignment from P to V .

Compared to the classical MBM, the assignment for the passenger assignment in
this paper must be capacity aware. As stated in Section 3.4, capacity constraint can be
addressed by vehicle-to-capacity-unit transformation, but such transformation incurs a
much greater bipartite edge set, which in turn leads to more time cost. To handle this
problem, we propose an assignment initialization algorithm tailored for our problem as
shown in Algorithm 1.

The basic idea of assignment here is similar to Hungarian algorithm, i.e. to explore
maximum matching on BG by finding augmenting path from each p ∈ P to V and
adding it to the matching if it exists. Specifically, let A be the matching of BG, a vertex
p ∈ P or v ∈ V is matched if it is endpoint of edge inA, and it is free otherwise. A path
is said to be alternating if its edge alternate between A and E −A. An alternating path
is augmenting if both endpoints are free, and it has one less edge in A than in E − A.
The assignment algorithm continuously replace the A edges in augmenting path by the
E −A ones to increment size of the matching until it cannot be enlarged.

input : BG - an input bipartite graph
output: A - an assignment result
A = ϕ;
do

p = FIND-AUGMENTING-PATH(BG,A);
if p ̸= NIL then

A = A⊕ p;
end

while p = NIL ;
return A;

Algorithm 1: Assignment Initialization Algorithm

The function FIND-AUGMENTING-PATH(BG,M) of Algorithm 1 (Line 3) mean-
s to find an augmenting path based on A. This is the key issue of this algorithm as it
determines both accuracy and efficiency: (1) from accuracy perspective, it must be ca-
pacity aware. Therefore, a counter v.cn ic created for each v ∈ V to record the times
it has been assigned to, and augmenting path via it would be denied if v.cn > v.c; (2)
from efficiency perspective, we hope the selected augmenting path can be covered by a
valid assignment (i.e. feasibility), and also to reduce its assignment cost (i.e. closer to
optimal result).

Particularly, we use some heuristics in implementation to speed up the assignment
processing. To reduce the cost of assignment, edges with lower weight are encouraged
to be chosen. To ensure the augmenting path to be part of valid assignment cover, we
tend to avoid using v ∈ V with low flexibility value F (v) to reserve it for possible
future use, and its flexibility is defined as:

F (v) =
|v.c− v.cn|∑

(p,v)∈E−Atemp
PR(p, v)

where Atemp is a temporal assignment result in processing, and PR(p, v) is the proba-
bility of (p, v) ∈ A. In computation, we calculate it as PR(p, v) = 1

degree(p) , because p
has degree(p) candidates for assignment in total. Obviously,

∑
(p,v)∈E−Atemp

PR(p, v)
is the total possibility of v to be assigned accordingly. After assignment initialization,
a valid assignment can be found if there is any, but the assignment may not be optimal.
Therefore, we further seek to improve the assignment result in the next section.

4.2.2 Assignment Improvement
The general idea of assignment improvement is to find a better assignment on a

subgraph with edges Esub ∈ E of bipartite graph BG. The pruning of bipartite edge
is thus vital to determine the accuracy and efficiency. Basically, we hope to filter out
bipartite graph edges to form such a bipartite sub-graph: firstly, the size of bipartite
edge set Esub are supposed to be less for efficient matching purpose; secondly, all the
edges (i.e. passenger-vehicle pairs) in optimal assignment must be preserved in the sub-
graph.

To achieve above two goals, we conduct (1) relevance driven edge pruning and (2)
improvement driven edge pruning in sequential order, to filter out hopeless bipartite
edges and edges unlikely to improve assignment result respectively. Then (3) improved
assignment search is made on the sub-graph after pruning.

(1) Relevance Driven Edge Pruning. In relevance driven pruning, we try to prune
out hopeless bipartite edges, e.g. edges with weights greater than the upper bound of
assignment cost, as they are not relevant to query processing anymore. Let function
minW (E) take input as an edge set E of bipartite graph BG, and return the minimal
weight of the edges in E respectively. To facilitate the derivation of upper bound of
assignment cost, we require the edge set Esub of sub-graph to be weight− bounded as
defined below.

Definition 1. (Weight-bounded) An edge set Esub ⊆ E is said to be weight-bounded if
it satisfies:

minW (E − Esub) ≤ w(e) ∀e = (p, v) ∈ Esub

Therefore, a weight-bounded edge set Esub contains those and only those edges in
E that have weight less than or equal to a threshold minW (E − Esub). Conversely,
all remaining edges in E − Esub have weight (i.e. pair cost) greater or equal to that
threshold. Suppose that we are given a weight-bounded edge set Esub, and an valid
assignment can be found based on Esub, the following theorem determines the upper
bound of optimal assignment, and can be used to help us to filter out bipartite edges that
is not relevant to the optimal assignment.

Lemma 1. If a valid assignment A′ is found from weight-bounded edge set Esub ⊆ E,
then the upper bound of the cost of optimal assignment A is minW (E−Esub), and we
have A ⊆ E − Esub.

Proof. Consider the edges inEsub. First, their edge weights are less or equal tominW (E−
Esub). Second, for any bipartite edge e = (p, v) ∈ E its edge weight is defined as the
pair cost w(e) = PCp,v . Given A′ ⊆ Esub, and we have ψ(A′) ≤ minW (E − Esub)
accordingly. As A is the optimal assignment, i.e. ψ(A) ≤ ψ(A′), it must also hold-
s that ψ(A) ≤ minW (E − Esub). Therefore, optimal assignment A has an upper
bound of assignment cost at minW (E − Esub). For A ⊆ E − Esub, We can proof
it by contradiction, i.e. UB would not be the upper bound if there exists an edge
(p, v) ∈ (E − Esub) ∩A as we have UB < minW (Esub) ≤ PCp,v in such case.

The Lemma 1 informs us how to conduct bipartite edge pruning based on the upper
bound of cost assignment: assume that we can find a valid assignment A at cost ψ(A)
from edge set Ei at loop i, then the upper bound of assignment cost becomes UB =
ψ(A), and all of the hopeless bipartite edges {e | e ∈ BG.E ∧w(e) > UB} are pruned
from the valid edge set EV (Line 1). Such an upper bound based pruning is definitely
meaningful, but not enough yet, because it is unlikely to find an assignment much better
than A in the next loop that carries out on EV . In contrast, we do hope the optimal
assignment can be detected in just a few loops for efficiency purpose.

(2) Improvement Driven Edge Pruning. After the relevance driven edge pruning,
additional edges (especially those with higher weight) must be pruned as well, so that
the assignment result can be improved. Based on EV after relevance pruning, the prob-
lems we face are: (1) the priority of edges for pruning; (2) the ratio of bipartite edges
to be preserved. The first problem is relatively easy, as edges with higher weight (i.e.
greater pair cost) tend to be removed. We focus on discussing the second problem here.

As all of the bipartite edges in EV has a potential to be part of optimal assignment,
in reality, the ratio of filtering is a trade-off between accuracy and efficiency: the higher
the ratio is, the the better assignment result we tend to have (as more high weight edges
are pruned), but the less possible to be able to successfully find one (as the less edge
candidates we have); on the other hand, if the lower the ratio is, the more likely to find a
valid assignment, even though the improvement tend to be not significant. How to find
a good balance is an important but challenging problem here.

We notice that the trade-off balance of improvement driven pruning is subject to
the lower bound of assignment cost in reality. The low bound can be derived by t-
wo lemmas. Let function ξ(p) to denote the minimal pair cost of all possible pairs
{(p, v)|v ∈ V } associated to a passenger p ∈ P , we have the following lemmas to find
a static low bound of assignment cost.

Lemma 2. Given a bipartite graph BG, min(ξ(p ∈ P)) is a lower bound of assign-
ment cost.

Proof. From the view of P , each p ∈ P must be assigned. If there is an assignment A
that ψ(A) < min(ξ(p ∈ P)), then the p ∈ P leading tomin(ξ(p ∈ P)) is not assigned
as no associated edge can be used. Therefore A must not be a valid assignment, and we
thus have ψ(A) ≥ min(ξ(p ∈ P)).

As we can see, Lemma 2 can give us a static lower bound of assignment cost, which
can be computed based on the input data. Furthermore, Lemma 3 can help us to update
the lower bound along with the assignment processing.

Lemma 3. If a valid assignment cannot be found on a weight-bounded edge set LB =
Esub ⊆ E, then minW (E − Esub) is a lower bound of assignment cost.

Proof. For any valid assignment A, we know A (Esub, so there must be an edge
e = (p, v) such that e ∈ E−Esub and e ∈ A. Given that ψ(A) ≥ w(e) ≥ minW (E−
Esub), then we know LB = minW (E −Esub) is the lower bound of assignment cost.

The lower bound of assignment cost is an important parameter, which is used to
divide edges in EV into two sets, i.e. one set EC = {e|e ∈ EV ∧ w(e) ∈ [LB,UB]}
and another set EV − EC (weight bounded to EC), towards which different criterions
are used. For EV − EC , we preserve all of them because their edge weights are even
less than LB (definitely not critical pair). In contrast, edges in EC are potential critical
pair, so improvement driven pruning on EC is necessary. A straightforward pruning
approach is the ϵ (0< ϵ <1)cut pruning method (ϵCP-method), through which we only
keep a ratio of ϵ edges in EC with minimum edge weights. Though this method is
practical, its performance relies on parameter ϵ that cannot be set in a rational and
automatical way.

To reduce the loops in assignment processing, a more intelligent method is thus
highly sought after to set ϵ in rational. Basically, the value of ϵ is subject to two factors:
(1) the abundance of choices, measured as the square of ratio between the number of
requested edges to that of valid edges in EV ; (2) the ratio of EC in EV , where we
tend to be more aggressive (smaller ϵ) if their ratio is greater, and to be conservative
otherwise (e.g. binary cut ϵ = 0.5). Putting the two factors together, we can normalize

ϵ =
√

|P |
|EV | ×

|EV |−|EC |
2·|EV | , where |EV |−|EC |

2·|EV | means to be aggressive when majority of
valid edges falls in EC , and the figure of ϵ is in the range of [0, 1].

(3) Improved Assignment Search. Based on the sub-graph BG′ after pruning, we
try to find an improved assignment result by bipartite matching. But the improvement
driven pruning may lead us unable to find a valid assignment. We say assignment im-
provement is successful if a valid assignment can be found, and unsuccessful otherwise.
In cases it is unsuccessful, we can have a more precise lower bound of assignment cost
from Lemma 3, to adjust the bipartite sub-graph to find a valid assignment in the next
round. We thus further discuss how to execute iteratively to find the optimal assignment.

4.2.3 Iterative Processing
In this part, we discuss how to iteratively improve the assignment until an optimal

assignment can be derived, particularly about the iterative processing procedure, the

reuse of intermediate results, and stop condition. Algorithm 2 shows the mechanism of
MBMA algorithm that put together assignment initialization and improvement steps.
The processing starts from the assignment initialization (Line 2), and move to improve-
ment step if a valid assignment is found. In improvement step, we use the upper and
lower bounds to guide assignment evolution. The upper bound and lower bound are
initialized and updated based on the Lemmas in previous section. If an improvement
is successful, the upper bound is updated (Line 13); Otherwise, we adjust the lower
bound and have it to be increased (Line 17). Improvement is made in loop until the
lower bound equals to the upper bound, indicating the optimal assignment is found.

input : Passenger set P , vehicle set V , and road network G
output: A - an optimal assignment
bipartite graph BG = construct(O, V,G);
A = assignment(BG);
if A is NIL then

return NIL;
end
else

LB = min(ξ(p ∈ P));
UB = ψ(A);
Esub = {e | w(e) ≤ UB};
do

A = assgnImpr(BG,UB,LB);
Ebcp ← set of edges pruned by binary cut pruning;
if A is not NIL then

UB = ψ(A); Esub = {e|w(e) ≤ UB};
end
else

Esub = Esub − Ebcp; LB = minW (BG.E − Esub);
end

while LB ≥ UB ;
return A;

end
Algorithm 2: MBMA Algorithm

In addition, we further optimize the assignment processing by two points. In as-
signment improvement, we only adjust the assignment result in previous loop based on
the new bipartite sub-graph (after pruning). It is thus not necessary to do the complete
matching on bipartite graph in each loop, as an improved assignment tends to be found
in just a few operations. Also, it can be processed in parallel if BG can be expressed by
un-connected bipartite sub-graphs.

Complexity Analysis. The computational overhead of MBMA algorithm mainly
for spatial query processing and assignment computation. Identical to IPA algorithm,
we need |P |+ |V | times of fastest path search, hence the time cost of spatial query pro-
cessing isO((|P |+ |V |)×(|G.E|×|G.V |+ |G.V |2log|G.V |)); As for assignment pro-
cessing, assume m and n are the size of edge and vertex set of the used bipartite graph

or subgraph, we go through up to O(m) loops for assignment improvement according
to Algorithm 4. In each loop, we find the maximum weight matching, with a time com-
plexityO(mn+n2log n). The MBMA algorithm thus costsO(m2n+mn2log n) time
in the worst case.

5 TN-FPS based Algorithm

Above solutions tend to be time consuming because of the high cost on scalable FPQs
processing by A* or Dijkstra, so we further use approximate FPQ querying techniques
to speed up the execution. Motivated by [8], this paper adopts a Transit Node based
Fastest Path Search (TN-FPS) algorithm to find approximate FPQs results based on the
transit nodes (i.e. important traffic intersections) selected by historical trajectory data.
Particularly, the approximations of TN-FPS are only allowed if they have no or few af-
fect on assignment accuracy. Though TN-FPS may also affect assignment precision, the
effect is usually trivial because of the observation that passengers tend to be assigned
to close vehicles, rather than those far-away.

Above observation informs us important guidelines for algorithm design: for close
passenger and vehicle pairs, to return their exact fastest path for assignment precision
purpose; for long distance pairs, to derive approximate fastest path for efficiency pur-
pose. Given two far-away locations a/b (that close to n/n′), the travel cost can thus be
approximated the following equation:

apprTC(a, b) = TCa,n + TCn,n′ + TCn′,b

apprTC(a, b) is the travel cost if a passenger goes to b from a via n and n′. It is a lower
bound of the accurate travel cost according to Lemma 1, and the assignment cost is thus
not under-estimated when approximation occurs.

Lemma 1. Approximate travel cost apprTC(a, b) is a lower bound of travel cost TCa,b

from location a to b.

The proof is omitted dy to the lack of space. The number of transit nodes (tn) is
in reality an efficiency and accuracy trade-off: the more transit nodes are, the better
accuracy can be achieved in despite of more computational cost. We set tn = 20 by
empirical, and users can revise it for extra precision or efficiency requirements. Two
major problems of TN-FPS algorithm are: (1) the selection of transit nodes; (2) how the
queries are processed.

(1) Transit nodes selection. In the selection of transit nodes, we apply the Trajec-
tory Analysis (TA) based method, which seeks to identify important intersections from
trajectory data to ensure that: firstly, the transit nodes are evenly distributed over the
road network; secondly, transit nodes are meaningful intersections passengers likely to
pass. Basically, trajectory data is the motion history of moving objects, and it is mod-
eled as a sequence of time stamped geo-locations Tr = (p1, p2, ...pn), and each point
pi has its location pi.loc and pi.time, and it can be aligned to the vertexes on the road
network by some map-matching algorithms [2, 11]. That means, each trajectory can
be converted to a network constrained model TrN = (vi, vj, ...vn). Through a large

trajectory dataset D, the importance of each vertexes can be seen as the frequency been
passed, e.g. a intersection passed by a large number of moving objects is always an
important junction, and it can be formalized as

Freq(vi) =

∑
Tr∈DNUM(vi, T rN)∑

Tr∈D |Tr|
In our approach, the network space is partitioned into —tn— of grids. For each

grid g, we formally measure the weight of each intersection v inside grid region g as
weight(v) = Freq(v)

DEU (v,g.c) , where DEU (v, g.c) is the Euclidean distance between v and
g.c (i.e. the center of g. Then we select out the intersection that has the greatest weight
value as a transit node. In this way, the selected transit nodes are thus rational in both
spatial and importance domains.

(2) Approximate Assignment Processing. The TN-FPS algorithm computes the
(possibly approximate) all-pair fastest pathes based on the transit nodes as input, and
finds the assignment result by the MBMA strategy.

For each passenger p, the Dijkstra based traverse on road network is carried out
but only limited to a small spatial space, and its accurate travel cost to all vehicles and
transit nodes that it reaches are recorded in a TC = P × V matrix. To avoid impact
from approximations to accuracy of assignment, the network traversal terminates if it
meets two conditions: (1) the number of reached vehicles to be larger than a threshold
λ. As passengers tend to be assigned to a close vehicle, the accuracy of assignment can
be guaranteed if a number of closest vehicles are found; (2) the traverse must reach
no less than two or more transit node, so that approximate distances to non-reached
vehicles can be calculated. Similarly, the distance cost from vehicles to transit nodes
and the destination are also computed. By integrating all of traversal results, we can
derive all the needed (accurate and approximate) travel cost information, by which a
good assignment can be computed by the MBMA strategy.

6 Experimental Study

In this section, we conduct extensive experiments on real spatial data sets to demonstrate
the performance of the proposed algorithms. The data set used in our experiments are
Beijing Road network, which contains 226, 238 directed edges (road segments) and
171,187 vertices (intersections), and Figure 2(a) shows their distribution on the spatial
space. The used trajectory data compose over 300,000 moving objects trajectories in
Beijing. All algorithms were implemented in JAVA and tested on a HP Compaq 8180
Elite (i5 650) computer with 2-core CPUs at 3.2GHz and 1.12 GHz, 4GB RAM and
running Windows XP operating system.

Scale No. of Passengers No. of Vehicles
S1 50 10
S2 100 20
S3 500 100
S4 5000 1000

Table 1. Setting of Test Cases

(a) Road Network

S1 S2 S3 S4
0

5k

10k

15k

20k

25k

30k

Scale

Ti
m

e
(s

)

Dij
A*
TN−FPS

(b) FPQs Runtime

Fig. 2. Road Network, FPQs Runtime

Experiments are based on 100 test cases in four scale settings shown as Table 1.
In each test case, we generate the given number of passengers and vehicles based on
random distribution over road network. The efficiency and accuracy of different FPQs
solutions are compared first, then we overlook the performances of the assignment al-
gorithms, and finally evaluate the final performances by integrating them together.

Performances on processing FPQs. Figure 2(b) shows the performances of FPQs
processing using the A*, Dijkstra and TN-FPS algorithms. In comparison, the efficien-
cy of TN-FPS significantly outperforms both of the Dijkstra and A* based algorithm
according to Figure 2(b). In contrast to A* and Dijkstra algorithms that finds the accu-
rate FPQs results, the result returned by TN-FPS may not be accurate because of the
approximation. We thus further evaluate TN-FPS under different setting of tn and k.

Figure 3(a) and Figure 3(b) are the efficiency and accuracy comparison in different
tn (i.e. number of transit nodes). From Figure 3(a), we can easily observe that the
runtime of FPQs processing is in reverse proportion to the number of tn, which can be
explained by the fact a closer transit node tends to exist, so the network traversal of FPQ
processing can stop early. Also, Figure 3(b) confirms the assumption that the greater
number of transit nodes tends to improve accuracy. In terms of accuracy, we measure
the error of the computed results as the ratio such thatError =

∑
p∈P

∑
v∈V apprTCp,v∑

p∈P

∑
v∈V TCp,v

.
Figure 3(c) and Figure 3(d) show the comparison of algorithm efficiency and accu-

racy in different k (i.e. number of reached vehicles in search). The efficiency varies only
for scale settings S1 and S2 because finding k vehicles for each passenger may traverse
a large space of the road network in such cases. In contrast for S3 and S4, the network
traverse space becomes no longer sensitive to k given lots of vehicles. Figure 3(d) shows
larger k tends to improve the accuracy of FPQs processing because more traverse on
road network, but the improvement is only significant for long distance FPQs.

Performances on Assignment. Based on the FPQs results, we further evaluate the
performances of the proposed assignment algorithms. Figure 4(a) indicates that the I-
PA algorithm tends to have poor efficiency and scalability performances, meaning it
can only be used when number of passenger and vehicle are small. This phenomenon
is cause by the unsatisfactory pruning effects towards the cost measure of passenger
assignment problem. In contrast, the MBMA based algorithm is much more efficient,
particularly when the scale of passengers and vehicles are large. Towards MBMA, we
further evaluate its performance in different parameter ε, and how their result improve
in different loops.

In the MBMA algorithm, ε is an important parameter to determine how we filter
out bipartite edges for result improvement. Figure 4(c) and (d) show how ε impacts the

S1 S2 S3 S4
0

200

400

600

800

0

200

400

600

Scale

T
im

e
 (

s)

k = 5
k = 10
k = 20

(a) Efficiency via k

S1 S2 S3 S4
0

20

40

60

80

100

120

140

Scale

E
rr

o
r

(%
)

k = 5
k = 10
k = 20

(b) Accuracy via k

S1 S2 S3 S4
100

200

300

400

500

600

Scale

T
im

e
 (

s)

tn = 10

tn = 20

tn = 30

(c) Efficiency via tn

S1 S2 S3 S4
0

20

40

60

80

100

120

140

Scale

E
rr

o
r

(%
)

tn = 10

tn = 20

tn = 30

(d) Accuracy via tn

Fig. 3. FPQs Processing Performances via k and tn

S0 S1 S2 S3 S4
0

5

10

15

20

25

30

35

Scale

T
im

e
 (

s)

IPA algorithm
MBMA algorithm

(a) Efficiency via
algorithms

1 5 10 15
10

15

20

25

30

10

15

20

25

Loop

A
ss

ig
n

m
e

n
t

R
e

su
lt

(m
in

s)

ε = 0.5
ε = 0.25
ε = 0.75

(b) Results via Loops

S1 S2 S3 S4
0

1

2

3

4

5

6

Scale

T
im

e
 (

s)

ε = 0.5
ε = 0.25
ε = 0.75
ε*

(c) Efficiency via ε
(VA=0.8)

S1 S2 S3 S4
0

1

2

3

4

5

6

Scale

T
im

e
(s

)

ε = 0.5
ε = 0.25
ε = 0.75
ε*

(d) Accuracy via ε
(VA=0.5)

Fig. 4. Assignment Processing Performances via selected algorithm, loops, ε

efficiency of the algorithm in cases with different capacity abundance, where the vehicle
abundance is defined as V A = |P |∑

v∈V v.c , meaning the ratio between requested capacity
and all available capacity. In general, greater value of V A incurs more processing cost
because the assignment operations are more likely to fail. We can easily observe that
the different thresholds tend to have similar efficiency performances, and the adaptive
setting of ε leads to the minimum processing cost. Figure 4(b) shows that the evolution
of the iterative assignment loops based on different settings of ε (in scale S3).

To sum up, the experimental results implies that the MBMA algorithm can support
us to find the optimal assignment efficiently, but the time cost for computing accurate
FPQs is usually much greater when classical algorithms like A* or Dijkstra are used.
If TN-FPS is applied for approximate FPQs processing instead, the efficiency will be
improved greatly and the final passenger assignment result is near-optimal (less than
3% average error rate in all settings).

7 Conclusion and Future Work

In this paper, we define the problem of passenger assignment with road network as the
underlying space, and devised two exact assignment algorithms based on integer pro-
gramming and maximum bipartite matching techniques respectively. To reduce the high
computational cost for scalable FPQs, an approximate solution is further introduced to
find the near-optimal results in a much more efficient way. Comprehensive experiments
are carried out to evaluate the performance of different algorithms.

In the future, we would like to improve the current approach by incorporating speed
patterns, so that pre-computed traffic knowledge and the pattern aware spatial indexes
can be used to further speed up the assignment.

References

[1] M. L. Balinski and R. E. Gomory. A primal method for the assignment and transportation
problems. Management Sci., 10(3):578–593, 1964.

[2] S. Brakatsoulas, D. Pfoser, R. Salas, and C. Wenk. On map-matching vehicle tracking data.
In Proceedings of VLDB, pages 853–864, 2005.

[3] T. Brunsch, K. Cornelissen, B. Manthey, and H. R?glin. Smoothed analysis of the succes-
sive shortest path algorithm. In SODA, pages 1180–1189, 2013.

[4] G. Dantzig and J. Ramser. The truck dispatching problem. Management Science, 6:80–91,
1959.

[5] M. Desrochers, C. Jones, J. K. Lenstra, M. Savelsbergh, and L. Stougie. Towards a model
and algorithm management system for vehicle routing and scheduling problems. Decision
Support Systems, 2(25):109–133, 1999.

[6] R. Duan and H.-H. Su. A scaling algorithm for maximum weight matching in bipartite
graphs. In SODA, pages 1413–1424, 2012.

[7] R. Geisberger, P. Sanders, D. Schultes, and D. Delling. Contraction hierarchies: Faster and
simpler hierarchical routing in road networks. In WEA, pages 319–333, 2008.

[8] D. M. P. S. H. Bast, S. Funke and D. Schultes. In transit to constant time shortest-path
queries in road networks. In ALENEX, 2007.

[9] M. Kaul, R. C.-W. Wong, B. Yang, and C. S. Jensen. Finding shortest paths on terrains by
killing two birds with one stone. PVLDB, 7(1):73–84, 2013.

[10] H. W. Kuhn. The hungarian method for the assignment problem. Naval Research Logistics
Quarterly, 2:83–97, 1955.

[11] K. Liu, Y. Li, F. He, J. Xu, and Z. Ding. Effective map-matching on the most simplified
road network. In ACM SIGSPATIAL GIS, pages 609–612, 2012.

[12] J. Munkres. Algorithms for the assignment and transportation problems. J. Soc. Indust.
Appl. Math., 5:32–38, 1957.

[13] P. Sanders and D. Schultes. Engineering highway hierarchies. In ESA, pages 804–816,
2006.

[14] J. Sankaranarayanan and H. Samet. Query processing using distance oracles for spatial
networks. IEEE TKDE, 22(8):1158–1175, 2010.

[15] L. H. U, K. Mouratidis, and N. Mamoulis. Continuous spatial assignment of moving users.
VLDBJ, 19(2):141–160, 2010.

[16] L. H. U, M. L. Yiu, K. Mouratidis, and N. Mamoulis. Optimal matching between spatial
datasets under capacity constraints. ACM TODS, 35(2):1–43, 2010.

[17] R. C.-W. Wong, Y. Tao, A. W.-C. Fu, and X. Xiao. On efficient spatial matching. In VLDB,
pages 579–590, 2007.

	cover_page-3
	DASFAA15_1_CLiu

